F := FreeGroup( "a", "b"); |
<free group on the generators [ a, b ]> |
Size(F); |
infinity |
G := F/[F.1*F.2/F.1/F.2, F.1^3, F.2^4]; |
<fp group on the generators [ a, b ]> |
Size(G); |
12 |
GeneratorsOfGroup(G); |
[a,b] |
a := g.1; b := g.2; |
a b |
AssignGeneratorVariables(G); |
// Idem |
a*a*a*a = a |
true |
a in G; a in F; |
true false |
a^3 = One(G); |
true false |
(a*b)^50; |
(a*b)^50 |
SetReducedMultiplication(G); |
|
(a*b)^50; |
a^-1*b^2 |
IsSubgroupFpGroup(G); |
true |
IsGroupOfFamily(G); |
true |
IsFpGroup(G); |
// = IsSubgroupFpGroup(G) and IsGroupOfFamily(G) |
G := FreeGroup(3); |
<free group on the generators [ f1, f2, f3 ]> |
H := CyclicGroup(5); |
<pc group of size 5 with 1 generators> |
IsFpGroup(G); |
false |
AsList(H); |
[ <identity> of ..., f1, f1^2, f1^3, f1^4 ] |
L := FreeGroup("a","b"); |
<free group on the generators [ a, b ]> #I Assigned the global variables [ a, b ] <fp group on the generators [ a, b ]> 8 [ <identity ...>, a, a^-1, b, b^-1, a^2, a*b, a*b^-1 ] true |